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Abstract

With the widespread use of virtual reality applications, 3D
scene generation has become a new challenging research
frontier.3D scenes have highly complex structures and need
to ensure that the output is dense, coherent, and contains
all necessary structures. Many current 3D scene generation
methods rely on pre-trained text-to-image diffusion mod-
els and monocular depth estimators. However, the generated
scenes occupy large amounts of storage space and often lack
effective regularisation methods, leading to geometric distor-
tions. To this end, we propose BloomScene, a lightweight
structured 3D Gaussian splatting for crossmodal scene gener-
ation, which creates diverse and high-quality 3D scenes from
text or image inputs. Specifically, a crossmodal progressive
scene generation framework is proposed to generate coherent
scenes utilizing incremental point cloud reconstruction and
3D Gaussian splatting. Additionally, we propose a hierarchi-
cal depth prior-based regularization mechanism that utilizes
multi-level constraints on depth accuracy and smoothness to
enhance the realism and continuity of the generated scenes.
Ultimately, we propose a structured context-guided compres-
sion mechanism that exploits structured hash grids to model
the context of unorganized anchor attributes, which signif-
icantly eliminates structural redundancy and reduces stor-
age overhead. Comprehensive experiments across multiple
scenes demonstrate the significant potential and advantages
of our framework compared with several baselines.

Introduction

Currently, there is a growing demand for 3D content in vir-
tual reality. However, creating 3D content is not only time-
consuming but also requires deep expertise, making 3D con-
tent generation a challenging frontier. In the 2D domain,
sufficient annotated datasets have greatly contributed to the
development of text-to-image generation models (Rombach
et al. 2022), enabling users to generate images through
natural language. However, the shortage of 3D annotated
datasets limits the application of supervised learning in 3D
content generation (Ouyang et al. 2023). To address this
challenge, recent studies (Poole et al. 2022; Lin et al. 2023)
have extracted 2D priors from diffusion models through a
time-consuming distillation process to optimize 3D con-
tent generation. However, these approaches (Wang et al.
2024) have limitations when extended to fine-grained scenes
with outward-facing viewpoints. Therefore, several methods

(Hollein et al. 2023; Ouyang et al. 2023; Chung et al. 2023)
that combine pre-trained text-to-image generation models
(Rombach et al. 2022) with monocular depth estimators
(Bhat et al. 2023; Ranftl et al. 2020) are receiving increasing
attention due to their advantages in complex scene genera-
tion.

Previous work utilized NeRF (Mildenhall et al. 2021) for
scene generation. Text2NeRF (Zhang et al. 2024) generates
3D scenes using an incremental framework, although it gen-
erates higher quality scenes, the generation time required is
very long. Recently, 3D Gaussian Splatting (3DGS) (Kerbl
et al. 2023) has been widely used for high-quality scene gen-
eration due to its excellent generation quality and real-time
rendering capabilities. Among them, LucidDreamer (Chung
et al. 2023) and Text2Immersion (Ouyang et al. 2023) use an
incremental scene generation framework that follows the op-
timization goals in 3DGS to achieve domain-free scene gen-
eration. Although previous 3DGS-based approaches have
made some progress in scene generation, they still suffer
from the following limitations: (i) 3DGS requires millions of
3D Gaussians to represent each scene, leading to high mem-
ory requirements, increasing storage costs and end-device
burdens; (ii) relying only on photometric loss in scene opti-
mization, lacking sufficient regularisation techniques, which
is prone to artifacts and ambiguities.

To address the above problems, we propose BloomScene,
a lightweight structured 3D Gaussian splatting for cross-
modal scene generation for high-quality 3D scene gener-
ation. BloomScene has the following three core contribu-
tions. (i) We propose a crossmodal progressive scene gen-
eration framework for generating 3D scenes via progressive
point cloud reconstruction and 3D Gaussian splatting. (ii)
Additionally, a hierarchical depth prior-based regularization
mechanism is proposed to enhance the realism and continu-
ity of the scene by implementing multi-level depth accuracy
constraints and smoothness constraints. (iii) We propose a
structured context-guided compression mechanism, which
leverages a structured hash grid to model the context of unor-
ganized anchor attributes, thus sufficiently compressing the
model storage space. Comprehensive experiments demon-
strate that the scenes generated by our framework signifi-
cantly outperform baselines in terms of fidelity and geomet-
ric consistency, proving its significant potential and advan-
tages in complex 3D scene generation.
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Figure 1: The overall framework of the proposed BloomScene. BloomScene utilizes the proposed crossmodal Progressive
Scene Generation (PSG) framework to progressively generate 3D scenes from the text prompts. Moreover, the hierarchical
Depth Prior-based Regularization (DPR) mechanism is applied to the 3DGS to enhance the realism and continuity of the
generated scene. Eventually, Structured Context-guided Compression (SCC) is employed to mine structural correlations in

3DGS and reduce the number of parameters.

Related Work
Crossmodal 3D Scene Generation

Generating 3D models through language enables users to
achieve requirements without modeling skills. Existing ap-
proaches (Mohammad Khalid et al. 2022; Lee and Chang
2022; Poole et al. 2022; Lin et al. 2023; Wang et al.
2024; Tang et al. 2023) optimize 3D content using a priori
knowledge from pre-trained models (Radford et al. 2021;
Rombach et al. 2022). Although these methods have made
progress in single-object generation, it is difficult to en-
sure texture and structural coherence in complex outward-
facing viewpoint scene generation (Wang et al. 2024). The
application of diffusion models in image inpaint further ad-
vances progressive scene generation (Fridman et al. 2024;
Hollein et al. 2023; Chung et al. 2023; Ouyang et al. 2023;
Engstler et al. 2024; Yu et al. 2024), by incorporating a
monocular depth estimator (Bhat et al. 2023; Ranftl et al.
2020) to update the scene. Among them, although Lucid-
Dreamer (Chung et al. 2023) and Text2Immersion (Ouyang
et al. 2023) use 3DGS (Kerbl et al. 2023) for higher-quality
scene generation, they are prone to artifacts and ambiguities
due to their reliance on photometric loss alone. Therefore,
we propose the hierarchical depth prior-based regularization

mechanism for multi-level regularisation of 3DGS.

Efficient 3D Scene Representation.

In 3D content generation, the choice of an appropriate 3D
representation is crucial. Classical explicit representations
(Munkberg et al. 2022; Berger et al. 2014) provide intu-
itive geometric control and are suitable for simple scenes,
but may face memory and rendering efficiency issues in
complex scenes. Neural network-based implicit represen-
tation (Mildenhall et al. 2021; Miiller et al. 2022; Barron
et al. 2022) despite improved expressiveness, there is still
a trade-off between speed and quality. 3D Gaussian Splat-
ting (3DGS) (Kerbl et al. 2023) enables fast rendering and
high-quality outputs, but high storage requirements impose
an additional burden. For this reason, some methods focus
on value (Fan et al. 2023a; Navaneet et al. 2023) or structure
representation (Lu et al. 2024a) to reduce the computational
burden. However, redundancy of structures or independence
of anchors leads to more inefficient compression. To this
end, we propose the structured context-guided compression
mechanism, which utilizes a structured hash feature grid to
achieve contextual modeling of anchor point attributes for
further compression of 3DGS.



Methodology
Preliminaries

3D Gaussian Splatting (3DGS) (Kerbl et al. 2023) intro-
duces the 3D Gaussians as differential volumetric represen-
tations of radiance fields, allowing high-quality real-time
novel view synthesis. A set of splats is initialized from
the calibrated camera poses and the sparse point clouds
produced through Structure-from-Motion (SfM) (Snavely,
Seitz, and Szeliski 2006). Each Gaussian is represented by
position ¢ and covariance matrix X, denoted as G(x) =

e~3(@-w)" B (@=p) The covariance can be decomposed
from a scaling matrix S and rotation matrix R, expressed
as ¥ = RSSTRT with S. To render the color, 3DGS fur-
ther optimizes opacity and Spherical Harmonic (SH) coef-
ficients, following the point-based differential rendering by
rasterizing anisotropic splats with a-blending, denoted as:

i—1 i—1
C = 20201]1 (1-a;), D= ZdazH (1-ay)
J

ey
where ¢; and «; denote the color and opacity of the Gaus-
sian, and d; is the z-axis of the points by projecting the cen-
ter of 3D Gaussians p to the camera coordinate.

Crossmodal Progressive Scene Generation

Previous methods (Wang et al. 2024) have made progress
in the single-object generation, but it is difficult to en-
sure texture and structural coherence in complex outward-
facing viewpoint scene generation.To realize crossmodal
3D scene generation, we propose a crossmodal Progressive
Scene Generation (PSG) framework to incrementally gen-
erate high-quality scenes with reference to previous work
(Ouyang et al. 2023). The main workflow of the proposed
PSG is shown in Figure 1, which mainly consists of two
phases: point cloud construction and supported view gen-
eration.

Point cloud construction. Given a text prompt y, our goal is
to generate 3D scenes that match y in a crossmodal manner.
We use a text-conditioned image inpainting model Fjj,pqint
and a monocular depth estimator F; to progressively inpaint
and update the scene. The pre-trained text-to-image diffu-
sion model Fyo; is used to generate the initial image Iy from
text prompt y. The user can also specify the initial image.
At this point, the pre-trained image-to-text generation model
Fio4 1s used to generate a suitable caption y. Fy is then used
to obtain the depth map D, from I.

The predefined cameras {Ci}ilio are denoted by the ex-
trinsic parameters E; € R3*4 and the shared intrinsic pa-
rameter K € R3*3, where N denotes the number of cam-
eras. Based on the initial camera Cy, 2D pixels are lifted to
3D space to construct the initial point cloud Py through a
series of geometric transformations fo_s3:

Py = fo—3(1y, Do, Ey, K). )

After obtaining the initial view’s point cloud Py, addi-
tional point clouds need to be merged into the existing ones
at each camera pose. Specifically, at the i*" camera, the

existing 3D point cloud P;_; is projected into 2D space
through a series of geometric transformations f3—s5. Due
to changes in camera pose, this projection produces a partial

image I; and a mask M; indicating the area for inpainting:
Ii, M; = f3—2(Pi_1, E;, K). 3)

The image inpainting model F;,;,qir¢ is used to inpaint an
image I; based on I,, M; and y. The monocular depth es-
timator Fy is used to obtain the depth map D;. Since there
is some difference between the depth maps of two neigh-
boring frames, D; needs to be processed by minimizing the
difference between the overlapping regions of the two point
clouds to get the aligned depth D; 415¢n:

D aiign = align(fa—sz(D;), Pi_y, M; = 1), 4)

where the function align(-) minimizes the difference be-

tween the overlapping parts (M; = 1) of two point clouds.
Then the inpainted pixels of ; need to be lifted to 3D space.
The updated point cloud P; can be defined as follows:

Pi = updat€(13i—1713i)a (5)
P; = fo33(I;, Dj atign, Ei, K, M; = 0),  (6)

where the function update(-) merges the new point cloud P,

into the existing point cloud P;_;, M; = 0 means only the
inpainted pixels will be lifted. The above steps are repeated
N times to obtain the final point cloud Py.

Supported View Generation. After creating the final point
cloud Py, we use Py as the initial SfM (Schonberger and
Frahm 2016) points to initialize 3DGS. Since the initial
(N + 1) RGBD images are not sufficient to train the 3DGS
to produce reasonable outputs, we choose to add additional

M support images to form the 3DGS training set I, ili'gM and

Di]i EM. We take the depth of the center of the initial depth

map Dy as the radius of the sphere. The cameras are shifted
+5° along the sphere to get new cameras {C’l}f\;w\f_l The
are obtained by re-

IN+M DN+M

3DGS training sets and

projection from Py using {C; }N+M.

D;, I, M; = fs—52(Py, E;, K), (7
where ¢ € {0,..., N + M}. When optimizing 3DGS, we
only consider the valid image regions (M; = 1) for the
support images I, Z]i }Afl and DN M 1 to prevent 3DGS from

learning the erroneous details of reprOJectlon

We propose hierarchical Depth Prior-based Regulariza-
tion (DPR) and Structured Context-guided Compression
(SCC) to optimize the quality of 3DGS-generated scenes
and reduce storage space. The detailed descriptions are
stated in the subsequent sections.

Hierarchical Depth Prior-based Regularization

3DGS represents the scene more realistically through nu-
merous 3D Gaussians with geometric and appearance at-
tributes. The scenes generated by 3DGS in the progressive
scene generation framework tend to be ambiguous and ar-
tifactual since the scene contains millions of attributes of



Gaussian distributions optimized only via gradient descent
based on photometric loss. Previous work (Yuan et al. 2024;
Li et al. 2024) utilizes score distillation to achieve 3D scenes
with consistency, which improves the quality of novel view
synthesis to some extent. Despite their progress, some lim-
itations remain: (1) lack of precise constraints on 3D cues
and depth information in the optimization process. (2) Ne-
glecting effective supervision of the visual and geometric
smoothness of the scene. The above issues limit the realism
and continuity of 3D scene generation. To this end, we pro-
pose a hierarchical Depth Prior-based Regularization (DPR)
mechanism that implements multi-level regularization on
the 3D Gaussians utilizing high-quality depth prior. Specif-
ically, we implement joint constraints on the depth maps
generated by 3DGS at the pixel level and distribution level
by utilizing the Huber loss and Central Moment Discrep-
ancy (CMD), respectively. Furthermore, the bilateral filter is
leveraged to enhance the continuity of the depth informa-
tion. Consequently, DPR generates high-quality 3D scenes
that are elaborate and multi-view consistent.

The depth map D is obtained by the Equation (7). 3DGS
estimates the z-depth map D of all pixel by the Equation (1).
Depth estimation accuracy constraints. We utilize a multi-
scale constraint paradigm at the pixel level and distribution
level to achieve accurate estimation of depth information.
The depth of object edges is often difficult to estimate and
inaccurate in depth maps. The edges of objects tend to be re-
gions with large image gradients. Thus, to apply more atten-
tion to the edges, we design a gradient-aware Huber-based
depth loss for implementing pixel-level depth constraints
and adaptive depth regularization, denoted as follows:

privel _ { grev 17 2= 1D = Dy, if [|D = Dlfx > 6

DPR — 1 (D—D)?+42 .
9reb| DT > 53—, otherwise

)

(®)
where g, = exp(—V) and V is the gradient of the current
aligned RGB image, § = 0.2max ||D — D||; and | D] in-
dicates the total number of pixels in D. Image edges with
larger gradients are dynamically assigned smaller learning
weights. Constraining two depth maps only at the pixel level
ignores the discrepancy of their distributions. Therefore,
we implement distribution-level alignment between depth
maps based on Central Moment Discrepancy (CMD), which
has been widely used in domain adaptation to estimate the
discrepancy between two domains (Zellinger et al. 2019).
CMD can utilize higher-order moments to effectively cap-
ture higher-order statistical information without kernel func-
tion dependence. Let X and Y be bounded random samples
with respective probability distributions p and ¢ on the in-
terval [a,b]™. The central moment discrepancy DX, is
defined as an empirical estimate of the CMD metric:

1
DEyp(X,Y) = mHE(X) —E(Y)l2
9

K
1
+ Z o —afF [Ck(X) — Cr(Y)]ly,
k=2

where E(X) = 157> ,cx @ is the empirical expectation

vector of sample X and C(X) = E ((z — E(X))") is the
vector of all £ order sample central moments of the coor-
dinates of X. The CMD-based depth loss is expressed as:

LA e =DEyp(D, D). (10

Depth smoothness constraints. To address the problem that
object boundaries in 3DGS-rendered images often appear to
have nonsmooth edges, we propose a depth loss based on
the bilateral filter (Tomasi and Manduchi 1998). Bilateral
filtering is a typical nonlinear filtering method that simulta-
neously considers both the space and value domain informa-
tion, allowing the removal of depth noise while preserving
the boundaries and details of the image. Given two pixels p
and g in the depth map with coordinates (i, 5) and (m,n)
respectively. The spatial kernel and color kernel of bilateral
filtering are denoted as:
ESDTYILJO}%th: 71 gs([’:q)'gr(p,q)'('ﬁp—DQ)27
W(p)| qg,‘:p)
Q)

where [N (p)| is the number of pixels in the neighborhood

of pixel p, D,, is the depth value at pixel p, spatial ker-
i 2 L N\2
nel gs(p,q) = exp(—% —”))

SN
G.(p,q) = exp(—%)_

Consequently, the loss of DRP is expressed as:

, and color kernel

Lopr =M Lpy + X LEPp + A LEFR". (12)

The trade-off hyperparameters A1, Ao, and A3 are set to 0.7,
0.1 and 1.0 respectively.

Structured Context-guided Compression

The microscopic 3D Gaussians with optimizable geometric
and appearance attributes in 3DGS make it a powerful ad-
vantage for rendering a variety of scenes. Nevertheless, a
complex and larger-scale scene often requires a prohibitively
large number of 3D Gaussians for fine-grained representa-
tion, resulting in significant storage overhead. Furthermore,
in real-world applications, low-cost and lightweight models
are more conducive to deployment and rapid scene gener-
ation. Due to the unorganized and sparse properties of 3D
Gaussians (Chen and Wang 2024), compressing 3D Gaus-
sians is a challenging task. Mainstream 3DGS compression
methods mostly focus only on the “values” (Fan et al. 2023b;
Navaneet et al. 2023), ignoring the structural correlation be-
tween their 3D Gaussians, resulting in a large amount of
structural redundancy and inefficient compression. Scaffold-
GS (Lu et al. 2024b) introduces anchors to cluster nearby
relevant 3D Gaussians and utilizes the anchors’ properties to
predict the 3D Gaussians’ properties. Although Scaffold-GS
exploits the spatial correlations among 3D Gaussians, the in-
dependence of anchors leads to a large number of sparse and
disordered anchors that are difficult to compress. In order to
take full advantage of the correlation between unorganized
anchors, we propose a Structured Context-guided Compres-
sion (SCC) mechanism based on Scaffold-GS that utilizes
a structured hash feature mesh to model the context of the
anchor attributes, thus further compressing the Scaffold-GS.



In Scaffold-GS, each anchor is composed of a location
x® € R and an anchor attribute A = {f* € RP"|l ¢
RS 0 € R3*K}, where each component represents anchor
feature, scaling, and offsets, respectively. During the render-
ing phase, the anchor feature is fed into the MLPs to gener-
ate attributes for 3D Gaussians, whose locations are deter-
mined by adding x, and o, where [ is utilized to regularize
both locations and shapes of the Gaussians. The attributes
inferred from the anchor attributes by neighboring 3D Gaus-
sians should be similar. Thus, we utilize a structured hash
grid to model the inherent spatial consistency of indepen-
dent anchors. The core idea is to replace the anchor feature
f@ with the feature f” obtained by implementing the tri-
linear interpolation in the hash grid. Assuming that the two
features have a strong correlation, we try to use the hash fea-
ture to model the context of the anchor attribute A, denoted
as conditional probability:

p(Az"H)=p(A|z"H) xp(x,H)

13
~ p(A | £ x p(H). (1

According to information theory (Cover 1999), the higher
the probability, the lower the entropy and the lower the bit
consumption. Therefore, the main goal of SCC is to mini-
mize the entropy of the anchor attribute A with the help of
the hash feature f".

Feature quantization strategy. To facilitate entropy cod-
ing, the values of .4 must be quantized into a finite set. Fol-
lowing (Ballé et al. 2018), we propose a Feature Quantiza-
tion Strategy (FQS) that uses “noise addition” and “round-
ing” operations in the training and testing phases, respec-
tively. for the i-th anchor x¢, we denote f; as any of its
A;’s components: f; € {f% 1;;0;} € RP, where D €
{D,,6,3K} is its respective dimension. The FQS process
is represented as:

11
fi:fiJFu(*iai)qu‘a

= Round (f;/q;) x q;,

for training (14)

for testing

where q; = Qo x (1 4 Tanh (r;)) and 7; = MLP(f}").
We input f” into MLP to obtain the factor r for dynamically
adjusting the predefined Q. Obviously, the quantization step
q is in the range of (0,2Q)), which makes f; very close to
the original feature f; and maintains a high fidelity.

Gaussian Distribution Modeling. To measure and reduce
the bit consumption of f; during training, we need to esti-
mate its probability in a microscopic manner. All three at-
tributes of the anchors exhibit statistical tendencies of Gaus-
sian distributions(Lu et al. 2024b). Thus, based on the in-
dependence of the anchor attributes, we construct Gaussian
distributions for all anchor attributes, with ¢ and o in the
respective distributions estimated by a contextual modeling

module from f". The probability of f,» is computed as:

p(1) = [ ot

1

2

- 1 N 1
=®p, 0 (fz’ + 2%) — Py, 0, (fi - 2‘11‘)

i o = MLP, (7).

15)
where ¢ and @ represent the probability density function
and the cumulative distribution function, respectively. Ul-
timately, we define the entropy loss as the sum of the bit

consumption of all f;

D

N
Lentropy = m Z ZZ (—log2p (fu)) )

Fe{fo o) i=1 j=1
(16)

where NV is the number of anchors and f; ; means the j-th
dimension value of f;. Minimizing the entropy loss achieves
a high probability estimation of p( f;) that guides the learn-
ing of the contextual model. The SCC loss is denoted as:

ESCC = EScaffold + Eentropy' (17)

where Lscaf foia represents the rendering loss as defined in
(Lu et al. 2024a), which includes two fidelity penalty loss
terms and one regularization term for the scaling I.

Optimization Objectives
The final loss we use for optimization is defined as follows:

L=Lra+ Lppr+ Lscc, (18)

where Lrgp is the original photometric loss proposed in
(Kerbl et al. 2023).

Experiments
Datasets and Evaluation Metrics

BloomScene is optimized for each input without requiring
training datasets. Due to the lack of 3D scene generated re-
lated to text prompt as a reference, previous reference-based
metrics (e.g., PSNR and LPIPS (Zhang et al. 2018)) are un-
suitable for this generation task. Therefore, we used six 2D
metrics to assess the quality of the generated scenes compre-
hensively. We use BRISQUE (Mittal, Moorthy, and Bovik
2012) and NIQE (Mittal, Soundararajan, and Bovik 2012)
for reference-free image quality assessment, and CLIP score
(Hessel et al. 2021) to measure how well the rendered im-
ages are aligned to the input text prompt. Moreover, the col-
orful, quality, and sharp metrics of CLIP-IQA (Wang, Chan,
and Loy 2023) are used to assess the appearance and feel of
the image in a way that is closer to human perception.

Implementation Details

To maximize the generalization ability of the network, we
employ pre-trained large-scale models to build the entire
network architecture. Specifically, we use Stable Diffusion
V1.5 (Rombach et al. 2022) as the text-to-image generation
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Figure 2: Qualitative comparison of our method and baselines. ”A cozy living room in Christmas”
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Figure 3: Qualitative comparison of our method and baselines. “A small cabin on top of a snowy mountain, Disney style”

model. The text-conditioned image inpainting model (Rom-
bach et al. 2022) is used to inpaint the masked images. If the
input is an image without text, LLaVa (Contributors 2023)
is used for image-to-text pairing for the image inpainting
model. We use ZoeDepth (Bhat et al. 2023) as the monocu-
lar depth estimator. To generate visual scenes, we move the
camera with a rotation of 0.63 radians. We use text prompts
describing indoor, outdoor, and artistic scenes. All experi-
ments are done on a single NVIDIA A800 GPU. All experi-
mental results are averaged over multiple experiments using
five different random seeds.

Comparison with State-of-the-Art Methods

We compare the proposed BloomScene with five represen-
tative and reproducible methods, including progressive 3D
scene generation methods: text2Room (Hollein et al. 2023),
LucidDreamer (Chung et al. 2023), and Invisible-stitch (En-
gstler et al. 2024), and perpetual view generation methods:
SceneScape (Fridman et al. 2024) and WonderJourney (Yu
et al. 2024). We use the open-source codebase of the above
models and modify the inputs to start from the same initial
images and text prompts.

Qualitative Results We perform an intuitive qualitative

analysis. We show the RGB rendering results of our method
and baseline methods in new viewpoints in Figure 2 and
Figure 3. We have the following observations: (i) Sce-
neScape, WonderJourney, and Invisible-stitch generate rel-
atively complete scene content, but clear breaks and ge-
ometric distortions can be observed in boxed areas. (ii)
Text2Room uses a polygonal mesh to represent the scene,
but its mesh fusion threshold filtering scheme results in in-
complete detection of stretched regions. This leads to a large
number of distorted and oversmoothed regions in the scene.
(iii) LucidDreamer is currently the more visually appealing
method for progressive scene generation but suffers from ar-
tifacts and geometric distortions in boxed areas. (iv) In con-
trast, our method preserves the necessary scene structures,
significantly reduces artifacts and geometric distortions, and
provides high-quality and realistic rendering results.

Quantitative Results Table 1 shows the average quantita-
tive results for several scenes. We can conclude the follow-
ing points: (i) Overall, our method generates higher qual-
ity 3D scenes with significantly reduced storage overhead,
which is significantly better than the baseline models. (ii)
The storage overhead of our generated scenes is 6.9x and
9.2x lower than Invisible-stitch (Engstler et al. 2024) and



CLIP-IQA 1
Quality Colorful Sharp

BRISQUE | NIQE |

Models Size (MB) | CLIP-Score 1
Text2Room (Hoéllein et al. 2023) 204.41
SceneScape (Fridman et al. 2024) 189.00
Invisible-stitch (Engstler et al. 2024) 430.55
WonderJourney (Yu et al. 2024) 145.95
LucidDreamer (Chung et al. 2023) 571.63
BloomScene (Ours) 62.36

29.45
30.97
31.16
30.76
31.19
31.94

0.60 0.77 0.34 27.24 3.43
0.56 0.76 0.32 31.98 3.95
0.63 0.68 0.41 26.19 3.56
0.58 0.77 0.38 27.46 3.47
0.66 0.77 0.42 24.07 3.05
0.72 0.79 0.45 20.40 291

Table 1: Performance comparison among the proposed framework and baselines. Our approach achieves the best results.

Models Size (MB) | CLIP-Score 1 CLIP-IQA T BRISQUE | NIQE |
Quality Colorful Sharp

w/o DPR 6448 31.54 069 077 040 22.40 3.03
wlo SCC 569.33 3176 070 078 044 2271 2.96
wio Lygoth 64.24 31.84 069 078 042 20.62 2.93
who Lt 63.92 31.89 069 078 042 21.01 2.93
who £7ee! 6433 31.70 068 077 042 20.82 2.95
BloomScene (Full)  62.36 31.94 072 079 045 20.40 2.91

Table 2: Ablation results of different components.
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Figure 4: Visualization of ablation results.

LucidDreamer (Chung et al. 2023) using 3DGS. It is also
significantly reduced compared to Text2Room (Hollein et al.
2023) and SceneScape (Fridman et al. 2024) using mesh
or WonderJourney (Yu et al. 2024) using point clouds. (iii)
Our BRISQUE and NIQE scores are 20.40 and 2.91, which
are 15.3% and 4.6% lower compared to the optimal scores.
Additionally, the best performance is achieved in the CLIP-
Score and CLIP-IQA metrics. It is demonstrated that the key
components effectively utilize the scene geometry informa-
tion to reduce the distortion of the rendered images and en-

hance their alignment with the text prompts.

Ablation Studies

To verify the necessity of the different components, we per-
formed comprehensive ablation experiments using the same
set of text prompts. The results are shown in Figure 4 and
Table 2. (i) Firstly, DPR is removed from BloomScene. The
decreased performance and worse depth rendering result in-
dicate that effective supervision of depth information and
smoothness during optimization is crucial in the realism and
continuity of 3D scenes. (ii) Moreover, we replace SCC with
the original 3DGS. The dramatic increase in scene storage
overhead indicates that compression for complex and larger-
scale scenes is very necessary. (iii) Eventually, we remove
the loss terms from DPR. The degraded and worse perfor-
mance in depth map smoothness and accuracy indicate that
the various loss items of DPR are necessary.

Conclusion

In this paper, we propose BloomScene, a lightweight struc-
tured 3D Gaussian splatting for crossmodal scene genera-
tion, which creates diverse and high-quality 3D scenes from
text or image inputs. Specifically, a crossmodal progressive
scene generation framework is proposed to incrementally
generate coherent scenes. Furthermore, we propose a hierar-
chical depth prior-based regularization mechanism that uti-
lizes multi-level constraints on depth accuracy and smooth-
ness to enhance the realism and continuity of the gener-
ated scenes. Finally, we propose a structured context-guided
compression mechanism that utilizes structured hash grids to
model the context of unorganized anchor attributes, thus sig-
nificantly reducing storage overhead. Comprehensive qual-
itative and quantitative experiments across multiple scenar-
ios show that the proposed framework has significant advan-
tages over several baselines. Our framework opens up more
possibilities for future virtual reality applications.
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